Prompt Engineering GuidePrompt Engineering CoursePrompt Engineering CourseServicesServicesAboutAbout
GitHubGitHub (opens in a new tab)DiscordDiscord (opens in a new tab)
  • Prompt Engineering
  • Introduction
    • LLM Settings
    • Basics of Prompting
    • Prompt Elements
    • General Tips for Designing Prompts
    • Examples of Prompts
  • Techniques
    • Zero-shot Prompting
    • Few-shot Prompting
    • Chain-of-Thought Prompting
    • Self-Consistency
    • Generate Knowledge Prompting
    • Tree of Thoughts
    • Retrieval Augmented Generation
    • Automatic Reasoning and Tool-use
    • Automatic Prompt Engineer
    • Active-Prompt
    • Directional Stimulus Prompting
    • ReAct
    • Multimodal CoT
    • Graph Prompting
  • Applications
    • Program-Aided Language Models
    • Generating Data
    • Generating Synthetic Dataset for RAG
    • Tackling Generated Datasets Diversity
    • Generating Code
    • Graduate Job Classification Case Study
    • Prompt Function
  • Models
    • Flan
    • ChatGPT
    • LLaMA
    • GPT-4
    • LLM Collection
  • Risks & Misuses
    • Adversarial Prompting
    • Factuality
    • Biases
  • Papers
  • Tools
  • Notebooks
  • Datasets
  • Additional Readings
Question? Give us feedback → (opens in a new tab)Edit this page
Applications

Prompting Applications

In this section, we will cover some advanced and interesting ways we can use prompt engineering to perform useful and more advanced tasks.

⚠️

This section is under heavy development.

Graph PromptingProgram-Aided Language Models

Copyright © 2023 DAIR.AI